Hyperspectral image segmentation using spatial-spectral graphs
نویسندگان
چکیده
Spectral graph theory has proven to be a useful tool in the analysis of high-dimensional data sets. Recall that, mathematically, a graph is a collection of objects (nodes) and connections between them (edges); a weighted graph additionally assigns numerical values (weights) to the edges. Graphs are represented by their adjacency whose elements are the weights between the nodes. Spectral graph theory uses the eigendecomposition of the adjacency matrix (or, more generally, the Laplacian of the graph) to derive information about the underlying graph. In this paper, we develop a spectral method based on the ‘normalized cuts’ algorithm to segment hyperspectral image data (HSI). In particular, we model an image as a weighted graph whose nodes are the image pixels, and edges defined as connecting spatial neighbors; the edge weights are given by a weighted combination of the spatial and spectral distances between nodes. We then use the Laplacian of the graph to recursively segment the image. The advantages of our approach are that, first, the graph structure naturally incorporates both the spatial and spectral information present in HSI; also, by using only spatial neighbors, the adjacency matrix is highly sparse; as a result, it is possible to apply our technique to much larger images than previous techniques. In the paper, we present the details of our algorithm, and include experimental results from a variety of hyperspectral images.
منابع مشابه
Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملHyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملComparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas
Nowadays remote sensing plays a key role in the field of earth science studies due to some of the advantages, including data collection at a very low cost and time on a very large scale. Meanwhile, using hyperspectral data is of great importance due to the high spectral resolution. Because of some limitations, such as hyperspectral imaging technology, it suffers from a reduction in the spatial ...
متن کامل